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Abstract: Network scanning is widely used to assess security postures of

hosts/networks, discover vulnerabilities, and study Internet trends. How-

ever, scans can generate large amounts of traffic, and efficient probing of

IPv6 hosts (where global scans are infeasible) is an outstanding problem.

In this chapter, we develop a framework for efficient Internet scans using

machine learning, by preemptively detecting and avoiding the scanning of

inactive hosts. We evaluate this framework over global scans of the IPv4

space over 20 ports, and show that using location and ownership informa-

tion we can reduce the bandwidth of scans by 26.7-72.0%, while discovering

90-99% of active hosts. We then evaluate a sequential method by gradually

adding information obtained from scanned ports to adaptively predict the
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remaining port responses, yielding 47.4-83.5% of bandwidth savings at the

same true positive rates. Our framework can be used to lower the band-

width consumption of scans and increase their hit rate, thereby reducing

their intrusive nature and enabling efficient discovery of active devices.

Keywords: Network Scanning, Vulnerability Assessment, Prediction and

Forecasting

21.1. Introduction

Network scanning is a widely studied topic, ranging from partial scans of the

Internet [1, 2], to global scans of the IPv4 address space [3, 4, 5]. This has lead

to the development of network scanning tools such as ZMap [3] and NMap [6],

which have provided researchers with large amounts of information on arbitrary

Internet hosts. Data resulting from network scans have been used in a wide

range of security studies, e.g., to probe and characterize machines utilized in

the Mirai botnet [7], to gauge the security posture of networks for cyber-risk

forecasting [8], and to study hosts susceptible to the Heartbleed vulnerabil-

ity [9]. Internet scanning is a crucial tool for giving visibility into the security

of Internet-connected entities, as it can measure the attack surface of networks

by revealing (potentially misconfigured/vulnerable) networked devices acces-

sible on the public Internet. Additionally, network scanning has been used in

many Internet measurement studies, including studies for examining trends

and adoption rates of different technologies [10, 11, 12], to detect discoverable

hosts and to categorize them (e.g., IoT devices) [13, 14, 15, 16], and to map

network topologies [17, 18, 19].

However, the current approach to Internet scanning involves exhaustively

sending probes to every scanned IP address (possibly the entire IPv4 address
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space), regardless of whether the target host is reachable on the public In-

ternet. Therefore, network scans strain the targeted networks/hosts, as they

can produce large amounts of traffic, especially when multiple ports of a host

are being probed. In addition, global scanning of the IPv6 address space is

not feasible using such exhaustive methods, forcing researchers to come up

with techniques for producing scan targets, in order to obtain a representa-

tive subset of publicly discoverable hosts for characterizing and studying IPv6

networks [2, 20].

Note that a large majority of probes sent during a scan will go unanswered,

since most IP addresses are inactive, meaning that they are not running any

Internet-facing service, or do not respond to outside probes. This gets more

pronounced as multiple ports are scanned, since a single active IP address

may only have a few number of active/open ports, i.e., ports that respond to

probes. In fact, the Censys database [4] which contains global scans of IPv4

address space across 37 different port contains roughly 161 million records in

its snapshots on 1/1/2019, meaning that ∼94.3% of the announced Border

Gateway Protocol (BGP) prefixes (∼170 /8 blocks, or ∼2.8 billion addresses)

are inactive, or do not respond to requests on any of the scanned ports. For

active IP addresses, the corresponding hosts are only responding to requests

for 1.8 ports on average.

Given the above context, a question arises as to whether probes can be sent

in a more judicious manner, i.e., if an Internet scanner can preemptively predict

whether a probe will be left unanswered, and thus refrain from sending it in the

first place. This would then lead to an overall reduction in bandwidth for an

Internet scan, reducing its intrusive nature. Moreover, reducing the bandwidth

of Internet scans allows one to probe IP addresses at a faster rate, which in turn
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increases the hit rate for discovering active hosts. This is important as more

hosts are migrating to the IPv6 address space [21, 22], where global scanning is

not feasible by existing methods, and increasing the rate at which hosts can be

probed (e.g., using a hitlist [2, 20]) will lead to more discovered active devices

in this space.

Motivated by the above, we develop a framework that leverages machine

learning to predict whether a given host will respond to probes on different

ports. In a machine learning setting, port responses can be seen as a set of

binary labels and we can use classification models to perform these multi-label

predictions. In situations where we can predict port responses accurately, we

are able to save unnecessary probes and improve the efficiency of the scanner.

Our first set of features for prediction include geolocation and autonomous

system (AS) information of IP addresses. These features can provide a ma-

chine learning model with information about the underlying network, e.g., to

distinguish between residential, educational, and hosting networks, which can

help the scanner adjust its probes accordingly. As an example we observe that

hosts belonging to residential networks are more likely to respond to requests

on port 7547 (CWMP), a protocol commonly used by routers/modems.

Moreover, we observe dependencies between the responses of different ports,

i.e., whether a host is responding to probes on the scanned ports. For instance,

if we receive a response from a host on port 443 (HTTPS), then it is likely

that it will also respond to probes on port 80 (HTTP), since both ports are

used to serve web content to clients. We also measure and observe high corre-

lation between ports associated with mail servers. We can then leverage these

correlations to improve classification accuracy by scanning different ports of

an IP address in sequence, and appending the obtained labels/features result-
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ing from each probe to the features vectors for predicting the remaining port

responses. We observe different levels of correlation between different ports, in

other words, some port responses are highly dependent on one another, while

others act more independently. Therefore the efficacy of the scanner is highly

dependent on the order in which ports are scanned. For this we develop an

adaptive technique for generating an optimal order for probing different ports

of a host.

We evaluate our technique over scans collected over 20 different ports be-

tween January and May of 2019 by the Censys database and show that using

only geolocation and autonomous system information, we can achieve band-

width savings (the reduction in number of probes) of 26.7-72.0%, while still

achieving 90-99% true positive rates for detecting active ports. We further

train and evaluate a sequence of classifiers, gradually adding the informa-

tion obtained from previous scans for predicting the responses of remaining

ports, and show that we can increase bandwidth savings to 47.4-83.5% at

the same true positive rates. We show that using only a single feature from

probed ports, i.e., whether the host has responded on said port, is sufficient for

achieving the aforementioned boost in performance, while minimizing the com-

putational overhead for performing predictions. Adding more information, e.g.,

features resulting from a stateful, or application layer probe [23], only results

in marginal benefits, while significantly increasing the computation required

for performing and processing the information from such scans. Additionally,

capturing the demographics of networks through geolocation and AS informa-

tion is crucial for sequential scans, as conducting predictions based on only

port responses results in poor performance.

Our main contribution are summarized as follows:
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• We develop and evaluate two methods for conducting smart network scans

by predicting whether a host will respond to probes on a certain port: (1)

parallel scans using a priori (i.e., location and AS) attributes of hosts as

features for prediction, and (2) sequential scans that take advantage of cross-

protocol dependencies, using the result of one scan as features, in order to

adaptively adjust the probes for consequent scans.

• For sequential scans, we develop a novel technique to find an optimal order

for scanning ports. We achieve this by first training a set of classifiers, mea-

suring the contribution of one port for predicting the responses of remaining

ports, and probing ports by decreasing order of their importance.

• We evaluate this framework by simulating it over global scans of the public

Internet conducted between January and May of 2019 over 20 ports, and

show that we can reduce the number of probes by 26.7-72.0% (47.4-83.5%)

using parallel (sequential) scans with negligible computational overhead,

while maintaining a 90%-99% true positive rate for discovering active devices

across all ports. We also examine the coverage of scans over vulnerable/mis-

configured IP addresses, and observer high true positive rates (>98.5%)

along these subpopulations of active IPs, suggesting that our method can

be reliably used for discovering vulnerable devices and assessing networks’

security posture.

The remainder of this chapter is organized as follows. In Section 21.2 we

go over the data sets used in our study, and how we preprocess the data to

prepare it for our analysis. In Section 21.3 we go over the models used in our

study, and define metrics for evaluating the performance of our framework.

Section 21.4 details our methodology for combining machine learning models

with network scanners under different scenarios. In Section 21.5 we evaluate
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the performance of our technique for reducing the number of probes sent by a

network scanner. We discuss our results in Section 21.6, go over related works

in Section 21.7, and conclude in Section 21.8.

21.2. Data Sets

In this section we go over the database used for obtaining global scans of the

Internet, and explain in detail how we curate and process measurements for

evaluating the performance of our technique in the real-world.

21.2.1. Global Internet scans

For obtaining scans of the public Internet, we use Censys [4], a database con-

taining results from global scans of the IPv4 address space across 37 different

ports for our observation window between January and May of 2019. Each

snapshot in the Censys database contains records (stored using JSON docu-

ments) on discoverable hosts, i.e., hosts that respond to at least one of the

sent probes. For this study we use snapshots corresponding to the following

five dates from 2019: 1/1, 2/1, 3/1, 4/1, and 5/1. We mainly use the snapshot

from 1/1/2019 to evaluate our framework, but use the more recent snapshots

to measure the performance degradation of our models over time in Section

21.6.3.

Each record in a Censys snapshot contains attributes that have been ex-

tracted from port responses, such as headers and banners, SSL/TLS certifi-

cates, and even highly granular attributes such as the choice of ciphers for

encryption and specific vulnerabilities probed for by Censys (e.g., Heartbleed).
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In addition, Censys also reports geolocation and ownership (AS) information

about hosts in their database provided by the MaxMind GeoLite2 database

[24], Merit Network [25], and Team Cymru [26]. We use these records for ex-

tracting features of Internet hosts, and training/evaluating our machine learn-

ing models for predicting port responses.

21.2.2. Data curation

To evaluate our framework, we generate information for randomly drawn IP

addresses in the following manner. We first select 17.5 million random IP ad-

dress from announced Border Gateway Protocol (BGP) prefixes corresponding

to each snapshot date, captured by CAIDA from Routeviews data [27], about

170 /8 blocks or ∼2.8 billion addresses. This is done to remove reserved and

private IP addresses, as well as address spaces not announced on BGP. For

each selected IP address, we then check whether it has a corresponding record

in a Censys snapshot. For IP addresses that do have a Censys record (i.e.,

an active IP), we append the Censys record to our curated data set. For ad-

dresses that do not have a corresponding Censys record (i.e., an inactive IP),

we query its geolocation and autonomous system information from Censys us-

ing the following technique. We first find the two closest active IPs in Censys

to the inactive IP, i.e., one with a smaller IP address, and one with a larger

IP address. We then find the smallest Classless Inter-Domain Routing (CIDR)

blocks that contain the inactive IP address and each of its active neighbors. If

the corresponding CIDR block for one neighbor is smaller than the other, we

then decide that the inactive IP belongs to the same network as that neigh-

bor, and use the AS and geolocation properties of the corresponding neighbor
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for the inactive IP. If all three addresses are contained within the same CIDR

block, then we copy AS and geolocation information from the closest neighbor,

or the one with a larger IP address if both neighbors have the same distance

to the inactive IP address.

The above procedure yields about one (16.5) million randomly drawn active

(inactive) IP addresses from each snapshot (note that only ∼5.7% of all IP

addresses are active according to Censys probes). We further sub-select one

million addresses from the inactive IPs to obtain a more balanced data set,

resulting in a curated data set containing roughly one million active and one

million inactive IPs for each snapshot. We use these data sets for training and

evaluating the performance of our scanning techniques.

21.2.3. Data processing

Records from the Censys database are stored using JSON documents with

deeply nested fields, containing location and ownership (AS) properties, as

well as attributes extracted from parsed responses, including headers, banners,

certificate chains, and so on. However, while these documents contain a wide

range of characteristics about Internet hosts, the information cannot be fed into

a classification model out of the box, and we need to convert these documents

to numerical feature vectors for analysis by a machine learning model.

JSON documents follow a tree-like structure, allowing different fields to

be nested inside one another, e.g., properties regarding the location of a host,

including country, city, latitude, and longitude. Therefore, simply extracting

tokens from the string corresponding to a JSON document fails to recognize

its structure, and does not provide any information about the field from which
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"AS" : {

"Organization" : "Akamai Technologies",

},

"Location" : {

"Country" : "United States",

},

"HTTP": {

"Headers" : {

"Server" : "Apache/2.4.18 (Ubuntu)",

}

}

→

AS.Organization has "akamai": True

AS.Organization has "vodafone": False

Location.Country = "China": False

Location.Country = "United States": True

has HTTP: True

has HTTP.Headers: True

HTTP.Headers has "apache": True

HTTP.Headers has "microsoft": False

has property HTTPS: False

has property SSH: False

...

Figure 21.1: An example JSON document with nested fields (left), and binary
features extracted for analysis in a machine learning model (right).

the token was extracted.

To address the above problem, we use the approach developed by Sarabi

and Liu [28] to extract high-dimensional binary features vectors from these

documents. This feature extraction algorithm first learns the schema [29] of

JSON documents in the Censys database by inspecting a number of sample

documents, and then extracts binary features from each field according to the

learned schema. This then produces features that can be attributed to fields of

the original JSON documents, and are extracted according to the data type of

those fields (i.e., string, categorical, boolean, etc.). Furthermore, for optional

fields we can also generate features that reflect their existence in a document,

e.g., open ports, or if a host is returning headers/banners for different protocols.

Figure 21.1 shows an example of how a JSON document can be trans-

formed into a binary vector representation using this approach. Note that each

generated feature is assigned to a certain field of the original JSON document,

allowing us to separate features extracted from location and ownership (AS)

information, as well as features extracted from different port responses. This

allows us to gradually add the information of scanned ports to our models for

performing predictions of remaining ports.
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Table 21.1: Sections from Censys documents,
number of features generated from each section, and
frequencies of active (open) ports among active IP
addresses; note that 5.7% of all IPv4 addresses are
active according to Censys measurements.

Section # of features Frequency

Geolocation 1513 N/A

Ownership (AS) 425 N/A

21/ftp 141 6.5%

22/ssh 622 11.6%

23/telnet 125 2.4%

25/smtp 875 4.1%

53/dns 41 5.1%

80/http 810 33.3%

110/pop3 790 3.0%

143/imap 827 2.8%

443/https 3263 35.3%

445/smb 1 1.8%

465/smtp 588 2.5%

587/smtp 993 3.4%

993/imaps 808 2.7%

995/pop3s 792 2.6%

2323/telnet 20 0.4%

3306/mysql 201 3.0%

5432/psql 68 0.4%

7547/cwmp 202 12.5%

8080/http 417 12.7%

8888/http 157 4.2%
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We train the feature extraction model from [28] on one million randomly

drawn records from the 1/1/2019 Censys snapshot (chosen independently from

the dataset detailed in Section 21.2.2), producing 14 443 binary features ex-

tracted from 37 different ports. To control the number of generated features,

we impose a limit of 0.05% on the sparsity of extracted features. These features

are in the form of tags assigned to a host, e.g., if a host responds to probes

on a certain port, if it belongs to a particular country, or if we observe certain

tokens in fields inside the document, e.g., AS names, headers/banners, etc.

We exclude features that are extracted from Censys documents’ metadata,

which are added by Censys by processing the information gathered from all

scanned ports and cannot be assigned to a certain port. We further remove 11

ports that have been observed on less than 0.3% of active IP addresses, since

we cannot collect enough samples on these ports for training robust models.

We also remove port 3389 (RDP protocol), observed on 1.9% of active IPs,

due to poor prediction performance, indicating that our feature set is not

effective in predicting responses for this port. After pruning the feature set we

obtain 13 679 features from 20 ports, as well as location and AS properties, for

training/evaluating our framework. Table 21.1 contains the fields/ports used

for our analysis, as well as the number of features extracted from each field,

and frequencies of active/open ports among active IP addresses.

21.3. Model and Metrics

In this section we go over the classification algorithm used for our proposed

framework and the features used for training models, and define the metrics

used for evaluating the performance of our classifiers.
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21.3.1. Classification algorithm

Classification is one of the most well-studied machine learning tasks. A wide

range of algorithms with various levels of complexity have been designed to

tackle this problem, including logistic regression, support vector machines

(SVM), neural networks [30], and decision tree-based models such as random

forests [31] and gradient-boosted trees [32]. Simple linear algorithms such as

logistic regression are fast to train, but often achieve less accuracy than more

complex and recent models, especially over large data sets. Neural networks

and deep learning models achieve state-of-the-art performance for many tasks

such as image/text classification, but are often slow to train. With tabular

data (or when not dealing with image, video, or natural language processing

tasks) tree-based algorithms are often preferred to deep learning models, due

to their superior speed/performance. For this study, we use a gradient-boosted

trees model, more specifically XGBoost [32] for predicting whether a host will

respond to requests on a certain port. We train one classifier for predicting the

label assigned to each port, resulting in a collection/sequence of classifiers that

can be used to predict the responses of all ports for a specific IP address.

21.3.2. Features for model training

For training a model, we first produce labels for each port of an IP address

by observing whether Censys has reported a response under said port for its

record of that IP address. Note that for an inactive IP, all the produced labels

are zero, meaning that no port is responding to requests. We then use different

subsets of the binary features discussed in Section 21.2.3 for training binary

classifiers, as detailed below.
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Pre-scan features. These include features extracted from location and AS

properties, which are available before performing any scans. These features

provide a priori information about each host, which can be used as initial

attributes for predicting port responses. Location information can help detect

patterns in the behavior of IPs in different regions, while AS properties can

help predict labels based on the type/owner of the IP address. For instance,

observing the word “university” in an AS name can indicate an educational

network, while “cable” can help recognize residential/ISP networks.

Post-scan features. Assuming that probes are performed sequentially, clas-

sifiers can also leverage features extracted from previous probes of an IP ad-

dress for predicting the responses of the remaining ports. These then provide

a posteriori features for classification. Note that using a stateless scanner such

as ZMap [3], we only record whether a host has responded on a certain port,

resulting in a single binary feature. However, with a stateful scan such as

ZGrab [23], a full handshake is completed with the server, and subsequent

classifiers can also make use of parsed responses, resulting in a richer feature

set. We evaluate both of these cases to determine the improvement provided

by machine learning for stateless and stateful scans.

21.3.3. Metrics

In Section 1, we pointed out that our learning task can be transformed into a

binary classification problem. Traditional metrics to measure the performance

of classifiers include accuracy and the AUC score. Note that the latter can

only be applied when the classifier is able to produce probabilities or scores,

and not just a zero or one prediction, which is the case for gradient-boosted
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trees. The AUC score is a good metric to measure a classifier’s ability in rank

ordering samples when labels are highly unbalanced. Indeed our task is a highly

unbalanced classification problem, since most IP addresses are inactive or do

not respond to probes. However, for our study we are focusing on reducing the

number of probes for relatively high true positive rates, while the AUC score

factors in the accuracy of the model over all operating points or true positive

rates. Therefore, to evaluate the performance of trained classifiers, we instead

estimate the probing rate at different true positive rates for discovering active

ports. Take yki ∈ {0, 1} to denote the label for IP i ∈ {1, . . . , N} and port

k ∈ {1, . . . ,M} (i.e., whether IP i responds to probes on port k), 0 ≤ ŷki ≤ 1

to be the prediction of the true label generated by a trained classifier, and

0 ≤ tkr ≤ 1 to be the threshold corresponding to the true positive rate 0% ≤

r ≤ 100%. Further assume that Sa denotes the set of active IP addresses in

our data set, and pa to be the percentage of active IPs in-the-wild (for Censys

pa is approximately 5.7%). We can then define the probing rate as follows:

PRk
r = pa

∑
i∈Sa 1{ŷ

k
i >= tkr}

|i ∈ Sa|

+ (1− pa)

∑
i/∈Sa 1{ŷ

k
i >= tkr}

|i /∈ Sa|
(21.1)

Note that the probing rate is defined for a certain port (k), and a target true

positive rate (r). In Equation 21.1, we are computing the weighted average

of probing rates over active and inactive IPs, since in our curated data sets,

detailed in Section 21.2.2, the proportions of active/inactive IPs do not re-

flect their proportions in-the-wild, i.e., we oversampled active IP addresses to

obtained a more balanced data set for training. 1 − PRk
r then denotes the
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bandwidth savings for port k at the true positive rate r, which we will use to

report the performance of our models in Section 21.5.

21.4. Methodology

In this section we propose two methods for combining machine learning with

networks scans, namely parallel and sequential scanning. Parallel scans can

be done independently on multiple ports, but use minimal information for

predicting port responses. On the other hand, sequential scans use a richer

feature set which in turn leads to more bandwidth savings, but require scanning

multiple ports in a pre-determined order.

21.4.1. Parallel scanning

Currently, most Internet scans (e.g., scans in the Censys database) are per-

formed separately and independently across different ports. In other words,

the entire IPv4 address is sweeped multiple times, each time sending probes to

all IP addresses on a certain port. This allows different ports to be scanned in-

dependently, possibly at different times, thereby reducing the amount of traffic

sent to networks/hosts. In this scenario, our method can only use the location

and AS properties of the targeted IP addresses for predicting the responses of

hosts, as depicted in Figure 21.2a. In this diagram, the gelocation (GL) and

AS features are fed to each trained model in order to produce the prediction

ŷki of the true label yki for sample i and port k, i.e., the estimated likelihood

that IP address i will respond to probes on port k. These predictions are then

fed to the scanner, which will decide whether to scan different IP/port pairs

16



x
0

i

AS/GL

y ̂ 1
i

y ̂ k
i

...

...

Model 1

y ̂ M
i

Model k 

Model k 

x
1

i
Scanner 1

x
M

i
Scanner M

x
k

i
Scanner k

...

...

(a) Parallel scans

x
0

i

AS/GL

y ̂ 1
i

Model 1

x
1

i

Scanner 1

+

y ̂ 2
i

Model 2

x
2

i

Scanner 2

+

y ̂ M
i

Model M

x
M

i

Scanner M

...

...

(b) Sequential scans

Figure 21.2: Diagram of scanning when all port labels are predicted using
only geolocation and ownership (AS) properties (left), and when information
obtained from port responses are used as features for subsequent probes (right).
ŷki denotes the predicted label for IP address i and port k from a trained
classification model (model k), and xki is the feature vector resulting from the
probe of IP i on port k; x0i is the feature vector for AS/GL features.

depending on the prediction of the model. In this study, we make decisions by

thresholding ŷki ; if ŷki < tkr the scanner refrains from sending the probe. Note

that tkr (specific to port k) is the threshold for reaching a target true positive

rate r.

While this approach uses a minimal amount of information for prediction,

applying machine learning to parallel scans is fairly straightforward, since the

predictions of trained models can simply be translated into blacklists that can

be fed to network scanners for refraining from sending probes to certain IP/port

pairs. Moreover, due to the crude granularity of gelocation and AS features,

we do not need to perform predictions for every IP address, but only for IP

blocks in which all IP addresses share the same features, therefore reducing the

computational overhead of our approach. We will discuss this point in more

detail in Section 21.6.4.
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21.4.2. Sequential scanning

In contrast to parallel scanning, one can also design a scanner to scan differ-

ent ports in a sequential manner. In this setting, we can take advantage of

the responses of previously scanned ports for predicting the remaining labels.

Cross-protocol dependencies have been observed by Bano et al. [13], but were

not directly used for bootstrapping network scans. This is due to the fact that

cross-protocol correlations by themselves are not sufficient for predicting other

port labels, as we will further discuss in Section 21.6.1. However, we show

that when combined with pre-scan features, i.e., location and AS properties,

cross-protocol information can help improve the efficiency of sequential scans,

as compared to parallel scans.

Assume xki , k ∈ {1, . . . ,M} to denote the feature vector resulting from

probing IP i on port k, and x0i to denote pre-scan features. Then for sequential

scanning, the classifier for port k is trained using {xli, l < k} as features, i.e.,

GL/AS features, as well as ports scanned earlier in the sequence. Note that

for parallel scans in Section 21.4.1 we are only performing predictions using

x0i as features. We evaluate and compare this approach to parallel scanning

in Section 21.5, resulting in more bandwidth savings. Figure 21.2b depicts the

process used for sequential scans. Similar to parallel scanning, each model in

this figure is generating a prediction ŷki for an IP/port pair, which is then fed

to the scanner for thresholding. The features resulting from each scan (i.e., the

post-scan features in Section 21.3.2) are then appended to the model’s input

features and used for all subsequent models. This allows models toward the

end of the sequence to make predictions based on a richer feature set, which

can result in more bandwidth savings for their corresponding scans.
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21.4.2.1. Finding an optimal scan order

Note that to achieve the most bandwidth savings, we first need to obtain an op-

timal order for scanning different ports of an IP address, since the dependency

between port responses can vary between different pairs of ports. Moreover, the

relationship is not necessarily symmetric, since a prominently used port such

as port 80 (HTTP) can provide a lot of information regarding the responses of

more uncommon ports, while the reverse might not be true.

To this end, we need to find an optimal scanning order to achieve the

lowest possible average probing rate across all ports. Note, however, that ex-

haustively evaluating all permutations of ports is not feasible; instead, we use

the following heuristic approach for quantifying port dependencies and finding

a semi-optimal order. We first train a set of classifiers that use the responses of

all remaining ports for prediction. For instance, if we want to predict the labels

assigned to port 21 (FTP), we use features obtained from all the remaining 19

ports, as well as location/AS features, for training/evaluating our classifiers.

We then compute the importance of each port for predicting the labels of all

other ports. In ensembles of decision trees, such as gradient-boosted trees, this

can be achieved by summing the improvement in accuracy brought by a feature

in all the splits that it is used for, yielding its contribution to the predictions

of the model. For each trained classifier, we then compute and normalize the

contribution from all features used in the model (so that all feature impor-

tances sum up to one), and then compute the contribution of each port for the

model’s predictions.

Let AM×M , where M is the number of ports (M = 20 for this study), be a

square matrix, where aij represent the importance of port i for predicting the

label of port j. Our goal is to find an ordering of ports, so that ports that pose

19



high importance for other ports are scanned first. In other words, if aij is high,

then we prefer to scan port i prior to port j. We can reformulate this problem to

finding a permutation Ap of both rows and columns in A, such that the sum of

elements in the upper triangle of A is maximized. We compare two techniques

for finding an optimal ordering, namely sorting ports by decreasing order of

their total contribution to other classifiers (ai =
∑

j 6=i aij), and sorting by

increasing order of total contribution received from other ports (ai =
∑

i 6=j aji).

The former prioritizes scanning ports that pose high importance for predicting

other port response first, while the latter prioritizes scanning ports that are

highly dependent on other ports last. In our experiments, we found that the

first approach resulted in higher overall bandwidth savings, and therefore we

report our results using this approach. While the proposed heuristic approach is

not guaranteed to find the best possible order (which would require exhaustive

evaluation of all port permutations), we found it to perform well in practice;

we will further elaborate on this in Section 21.5.3.

21.4.2.2. Training the sequence of classifiers

Note that the aforementioned models are only used for finding the order in

which ports are scanned, and are not used for running the actual probes. Once

the order had been determined, we retrain our classifiers using the obtained

sequence. Each classifier is then trained using gelocation and AS features, as

well as features resulting from scans that are placed earlier in the sequence. It

is worth mentioning that for false negatives (i.e., when an active port is not

scanned due to an incorrect prediction) the true features of the corresponding

port are not revealed, and subsequent models are making predictions based

on partially masked features. Therefore when evaluating our classifiers, we
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also mask the features corresponding to false negatives1, to get an accurate

estimate of our technique’s performance; for training, we use the true features

of each port without any masking.

21.5. Evaluation

In this section we evaluate the bandwidth savings of our framework for both

parallel and sequential scans, and compare the performance of stateless sequen-

tial scans with stateful scans and scanning without using a priori (i.e., location

and AS) information.

21.5.1. Setup

We use cross-validation to train, tune, and evaluate the performance of our

framework. We split the curated data sets from each snapshot (detailed in

Section 21.2) into a training set containing 60% of samples, used for training

classifiers, and a test set containing 40% of samples for evaluating performance

according to the metrics defined in Section 21.3.3.

For XGBoost models, we use 100 boosting rounds (i.e., the number of trees

in the ensemble), a learning rate of 0.2, and a maximum depth of 20 for each

tree in the ensemble; these parameters have been chosen by cross-validation.

We use the logistic objective to produce probabilities between zero and one for

each sample.

1Note that false negatives are dependent on the choice of the classifier’s operating point, or

the target true positive rate. Therefore, we generate different masks and rerun the sequence

for evaluating each true positive rate.
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Note that for curating data sets, we undersampled inactive IP addresses

to prevent our data sets from being dominated by inactive samples. However,

simply training a classifier on this dataset means that the training algorithm

gives equal weight to predictions on active/inactive IPs, while in reality a false

prediction on an inactive sample should be given higher weight than an active

sample. Therefore, we adjust the weights for active and inactive samples to

reflect their true population in the real world.

Finally, we weight positive labels for each port by computing the ratio

between the sum of weights for IPs with an inactive port, and the sum of

weights for IPs with an active port, i.e.,
∑

yki =0w
k
i /

∑
yki =1w

k
i , where wk

i is the

weight assigned to sample i for port k. This is done to handle the imbalanced

nature of our data set, where positive labels are scarce. Without this scaling,

the model will be heavily biased toward predicting a label of zeros for all

samples, resulting in poor performance over samples with an active port [33].

21.5.2. Parallel scanning

We first evaluate the performance of our technique for improving parallel scans,

depicted in Figure 21.2a. Table 21.2 summarizes our results. Each row in Table

21.2 corresponds to a certain target true positive rate, reporting the bandwidth

savings (1−PRk
r ) for different ports, that is the percentage of probes that were

not sent while achieving the target true positive rate. We have also reported

the overall bandwidth savings by averaging bandwidth savings across all ports

in the last row in Table 21.2.

Our evaluation results suggest that we can achieve an overall bandwidth

savings of 26.7% while detecting 99% of IP/port pairs that respond to requests;
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Table 21.2: Bandwidth savings for parallel scans using AS
and geolocation features. Each cell reports the percentage of
IPs for which we can refrain from sending a probe, while still
achieving the corresponding true positive rate for detecting ac-
tive ports. Overall bandwidth savings are computed by averaging
over all ports. Ports 445 (SMB) and 7547 (CWMP) receive the
most bandwidth savings.

Port/protocol
Target TPR

90% 95% 98% 99% 99.9%

21/ftp 60.8% 43.9% 27.7% 17.6% 2.9%

22/ssh 59.8% 44.5% 28.7% 20.2% 6.9%

23/telnet 51.7% 36.1% 21.5% 15.3% 4.3%

25/smtp 69.1% 50.3% 30.8% 21.4% 4.0%

53/dns 59.7% 43.7% 27.2% 16.9% 3.3%

80/http 56.6% 42.3% 27.0% 19.5% 7.7%

110/pop3 81.8% 64.2% 39.4% 23.1% 3.0%

143/imap 82.9% 66.0% 43.7% 27.3% 3.6%

443/https 53.9% 39.7% 26.0% 19.2% 7.5%

445/smb 92.3% 78.0% 56.9% 46.8% 24.4%

465/smtp 82.1% 67.3% 42.8% 29.5% 3.4%

587/smtp 77.2% 61.1% 37.6% 23.8% 5.0%

993/imaps 83.9% 69.1% 46.3% 31.6% 3.1%

995/pop3s 86.1% 71.4% 48.0% 31.5% 4.1%

2323/telnet 62.7% 46.0% 31.1% 24.1% 1.0%

3306/mysql 81.8% 63.3% 43.8% 28.1% 4.6%

5432/psql 66.4% 45.2% 20.8% 14.3% 1.0%

7547/cwmp 92.4% 86.7% 78.6% 70.0% 39.2%

8080/http 61.0% 48.5% 33.1% 23.9% 8.0%

8888/http 78.8% 63.1% 41.9% 30.5% 8.5%

Overall 72.0% 56.5% 37.6% 26.7% 7.3%
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this can be further increased to 72.0% when using a lower true positive rate

of 90%. Note that this true positive rate is consistent across all ports; for each

port we are computing the threshold for achieving the target true positive rate

by computing the ROC curve of samples in our test set, and choosing the

corresponding operating point for the target true positive rate.

Our results suggest that location and AS properties of IP addresses can be

effectively used to predict whether a host will respond to requests on a certain

port. Interestingly, we observe that responses of some ports can be predicted

more accurately, resulting in higher overall bandwidth savings. For instance,

while the savings at 99% true positive rate in Table 21.2 are ∼20-30% for most

ports, we can obtain higher savings of 70.0% for port 7547 (corresponding

to the CWMP protocol). Note that the CWMP is protocol used by modems

and router, which are more common on ISP networks. Indeed we observe that

IP addresses that have the token “charter” (i.e., Charter Communications) in

their AS description field are 15 times more likely to respond to probes on port

7547, while observing the token “amazon” makes a host more than 400 times

less likely to have an open CWMP port.

21.5.3. Sequential scanning

We then evaluate the performance for sequential scans, depicted in Figure

21.2b. For this section, we only use a single feature from each port, i.e., whether

it has responded to the scanner. This makes our technique compatible with

stateless (IP layer) scanners such as ZMap, while at the same time minimizing

the processing required for constructing features for subsequent probes.

As discussed in Section 21.4.2, we first need to to measure the importance of
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Table 21.3: Bandwidth savings when using all port responses
(except the one that is being predicted) as features. Note that
these results provide a lower bound for the bandwidth savings
for sequential scanning (Table 21.4).

Port/protocol
Target TPR

90% 95% 98% 99% 99.9%

21/ftp 95.2% 82.0% 58.5% 42.8% 13.8%

22/ssh 85.7% 66.5% 43.3% 31.4% 10.5%

23/telnet 73.4% 56.4% 37.1% 22.5% 5.0%

25/smtp 98.7% 94.7% 69.2% 45.2% 8.7%

53/dns 79.2% 63.3% 39.6% 25.9% 4.5%

80/http 87.6% 69.6% 48.8% 34.9% 11.6%

110/pop3 99.8% 99.8% 99.8% 99.5% 60.9%

143/imap 99.9% 99.8% 99.8% 99.7% 82.8%

443/https 78.7% 59.8% 39.1% 28.8% 9.8%

445/smb 94.0% 81.9% 63.6% 53.4% 30.1%

465/smtp 99.9% 99.8% 99.7% 96.7% 50.3%

587/smtp 99.2% 94.0% 72.7% 52.8% 12.9%

993/imaps 99.9% 99.9% 99.8% 99.7% 48.9%

995/pop3s 99.9% 99.9% 99.8% 99.8% 95.2%

2323/telnet 69.4% 52.3% 39.3% 28.9% 15.2%

3306/mysql 98.8% 96.8% 84.4% 67.3% 21.9%

5432/psql 90.1% 73.5% 34.4% 19.9% 5.3%

7547/cwmp 92.9% 87.2% 80.2% 72.6% 41.1%

8080/http 70.8% 58.5% 42.5% 31.3% 10.6%

8888/http 85.2% 72.4% 53.5% 41.2% 10.8%

Overall 89.9% 80.4% 65.3% 54.7% 27.5%
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Figure 21.3: Contribution of port responses for predicting other port labels.
Ports are scanned from left to right (top to bottom). Each column displays the
importances of other ports for predicting the label of the corresponding port.
The importances on the diagonal correspond to the contribution of location
and AS features. We observe that high importance cells are placed in the upper
triangle, enabling classifiers to use them for prediction.

each port for predicting other port labels. Therefore, we train a set of classifiers

by using all port responses (except the one for which we are predicting labels) as

features for prediction. Our results are reported in Table 21.3. We observe that

the bandwidth savings are significantly higher that those in Table 21.2; note

that the bandwidth savings in Table 21.3 are an upper bound for the savings we

can achieve by predicting port responses, since each classifier is using the most

amount of information that can be available to them for prediction. However

in reality, some ports are inevitably scanned before others, meaning that they

need to generate predictions based on a subset of the information that is used

in Table 21.3.

We then compute the importance of each port to find an optimal ordering

according to the process detailed in 21.4.2, so that ports that pose high impor-
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tance for predicting the remaining labels are scanned first. Figure 21.3 displays

the pairwise importance of ports. Ports that are scanned first are placed to the

left (top) of the figure. We observe that after ordering, most of the cells with

a large contribution are placed in the upper triangle. Note, however, that in

some instances (e.g., ports 80 and 143, corresponding to the HTTP and IMAP

protocols) we inevitably have to forgo some high importance cells, e.g., when

two ports are mutually important for one another. Interestingly, we observe

that ports corresponding to mail servers (IMAP/IMAPS, POP3/POP3S, and

SMTP) are highly correlated with one another, which explains the high band-

width savings for these ports (often more than 90%) in Table 21.3. The HTTP

protocol also exhibits high importance for a wide range of ports, which is the

main reason why it is scanned first, followed by the IMAP protcol, which pro-

vides major benefits for predicting the responses of other mail protocols. Ports

such as 7547 (CWMP) and 445 (SMB) are isolated, meaning that they do not

provide nor recieve any benefits for/from the labels of other ports, and are

placed toward the end of the sequence.

We then train a sequence of classifiers using the obtained order from Figure

21.3, the bandwidth savings of our trained models are included in Table 21.4.

Compared to Table 21.2 we observe between 10% to 20% more bandwidth

savings for different true positive rates; this is largely due to the significant

performance benefits over mail server ports. However, we also obtain more

bandwidth savings across almost all ports, with notable savings on ports 21

(FTP), 3306 (MySQL), and 5432 (PSQL). Our results justify the use of the

sequential structure in Figure 21.2b for reducing the probing rate of scans. For

instance, at 99% true positive we can refrain from sending approximately 1/4

probes for parallel scans, while using sequential scans this increases to dropping
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Table 21.4: Bandwidth savings when ports are sequentially
scanned according to the diagram in 21.2b, yielding ∼10%-20%
more bandwidth savings compared to Table 21.2. Mail server
ports (IMAP/IMAPS, POP3/POP3S, and SMTP) receive the
most benefits, reducing the number of probes by more than 90%
in some instances. FTP, MySQL, and PSQL protocols also re-
ceive considerable boost compared to Table 21.2.

Port/protocol
Target TPR

90% 95% 98% 99% 99.9%

21/ftp 82.1% 68.7% 47.7% 36.3% 11.2%

22/ssh 69.3% 52.7% 35.3% 25.6% 9.7%

23/telnet 62.9% 49.0% 32.3% 22.3% 7.9%

25/smtp 85.8% 69.9% 48.8% 37.1% 10.1%

53/dns 72.1% 57.0% 36.5% 25.4% 5.9%

80/http 55.8% 41.4% 26.1% 18.8% 7.0%

110/pop3 99.1% 97.6% 87.3% 72.8% 27.8%

143/imap 98.0% 91.0% 68.0% 51.7% 6.3%

443/https 61.7% 45.3% 30.8% 22.5% 7.3%

445/smb 94.1% 82.9% 65.1% 53.1% 22.6%

465/smtp 99.8% 99.7% 97.0% 90.6% 50.1%

587/smtp 90.7% 75.6% 53.8% 39.9% 12.6%

993/imaps 99.5% 99.2% 97.8% 88.4% 37.1%

995/pop3s 99.9% 99.8% 99.8% 99.7% 94.0%

2323/telnet 68.1% 50.7% 38.6% 35.3% 12.0%

3306/mysql 98.2% 95.9% 80.6% 67.2% 23.4%

5432/psql 90.1% 70.2% 34.0% 21.6% 6.4%

7547/cwmp 92.6% 86.8% 79.3% 70.8% 37.9%

8080/http 65.6% 53.7% 37.7% 28.4% 10.8%

8888/http 84.3% 72.7% 53.2% 40.5% 14.9%

Overall 83.5% 73.0% 57.5% 47.4% 20.8%

28



slightly less than 1/2 probes. At 95% true positive rate, Table 21.4 suggests

that we can drop roughly 3/4 probes, with a probing rate of 27.0%, while using

parallel scans we achieve a probing rate of 43.5%.

We also observe that the obtained scan order puts our bandwidth savings

close to the upper bounds in Table 21.3. Note that as mentioned before, we

inevitably have to forgo the dependency of some pairs of ports (e.g., the de-

pendency of port 80 on other ports, and port 143 on other mail server ports),

in order to utilize their high predictive power for ports placed further in the

classifier sequence. In fact, the difference between bandwidth savings for ports

80 and 143 in Tables 21.3 and 21.4 accounts for 44% of the difference in overall

bandwidth saving at 99% true positive rate. This suggests that we are indeed

taking full advantage of cross-protocol information for reducing probing rates,

and further justifies our proposed technique for finding an optimal order for

scanning ports.

21.6. Discussion

In this section, we provide further motivation for our proposed method for

conducting smart scans by comparing our methodology to other approaches

with different levels of information, inspecting coverage of scans over vulnerable

and misconfigured IP addresses, discuss how often models need to be retrained

to keep them up-to-date, as well as the practical utility of our framework and

its computational performance.
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21.6.1. Comparison with other approaches

Our results on parallel and sequential scans demonstrate the ability of using

location, AS, and cross-protocol information for predicting active IP addresses.

In previous work, Klick et al. [34] have shown that it is possible to reduce scan

traffic by conducting full scans and identifying low density prefixes. However,

this method relies on conducting full scans to be able to identify low density

prefixes, especially when inspecting small prefixes or rarely active ports, where

random sampling of a small subset would not yield an accurate estimation. We

address this by conducting partial scans of 17.5 million IP addresses (∼0.6% of

the address space announced on BGP) to train classification models based on

location and ownership properties, combining them with cross-protocol infor-

mation to further reduce the traffic generated by scans. Moreover, Klick et al.

[34] report that their accuracy (true positive rate) drops at a rate of 0.3%-0.7%

per month, while our method can guarantee coverage by retraining models, or

readjusting thresholds as discussed in Section 21.6.3.

While the dependency between active ports has been observed in previous

work [13], our method attempts to utilize this property for improving the

efficiency of scans by combining them with a priori attributes. To examine the

boost achieved by appending gelocation and AS properties to port responses,

in this section we compute bandwidth savings when using only cross-protocol

information for sequential scan.

Additionally, our results so far on sequential scans have been obtained

by adding only a single binary feature for each scanned port: whether the

probed host has responded to the request. While, this assumption makes our

technique compatible with stateless scanners such as ZMap, it leads to the

following question, can we achieve a better performance by completing a full
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handshake with the probed host, and record and append the resulting features

for prediction? Note that for active IP addresses, Censys also records details of

stateful (application layer) scans conducted using ZGrab [23], which in turn is

converted to a rich feature set as detailed in Table 21.1. These features include

tokens extracted from headers/banners of different protocols, parsed SSL/TLS

certificate chains served by secure protocols such as HTTPS, and even granular

attributes such as the choice of encryption ciphers, misconfiguration such as

open DNS resolvers, etc.

To answer the previous questions, we also train a sequence of classifiers

without using geolocation and AS features, and another sequence utilizing

the full set of features extracted from stateful scans. Our results are included

in Table 21.5, where we have included average bandwidth savings across all

ports. Note that for inactive IPs/ports, stateful and stateless scans provide the

same level of information, and since the majority (94.3%) of IP addresses are

inactive, the overall performance of both methods will be similar. Therefore for

a more thorough comparison, we are also reporting the bandwidth savings of

all three methods over only active IP addresses in Table 21.5. We have plotted

the overall bandwidth savings of the examined scanning strategies in Figure

21.4.

Comparing stateless scans with and without a priori features, we observe

that the latter achieves significantly less bandwidth savings, even lower than

parallel scans. This demonstrates the importance of using gelocation and AS

features for conducting machine learning enabled scans, i.e., characterizing the

network that an IP address belongs to plays an important role for predict-

ing active hosts. This also suggests that that pre-scan and post-scan features

complement each other well, boosting the performance of our framework when
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Table 21.5: Overall bandwidth savings across all ports for parallel, stateless se-
quential, and stateful sequential scans. Savings are reported over all IP addresses, as
well as active IPs only. Conducting stateless scans without the use of location and
AS feature results in poor performance. Additionally, we do not observe a significant
improvement by using stateful scans.

Scan type
Target TPR

90% 95% 98% 99% 99.9%

Parallel
All 72.0% 56.5% 37.6% 26.7% 7.3%

Active 57.6% 43.5% 27.9% 19.4% 5.6%

Stateless sequential
All 83.5% 73.0% 57.5% 47.4% 20.8%

Active 60.9% 50.1% 37.2% 29.2% 12.0%

Stateless sequential All 49.7% 37.1% 25.0% 19.6% 3.5%

(w/o pre-scan features) Active 32.9% 25.0% 20.5% 14.2% 3.6%

Stateful sequential
All 83.9% 73.1% 58.2% 47.9% 20.2%

Active 67.9% 58.0% 45.3% 36.7% 15.0%
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Figure 21.4: Overall bandwidth savings of different feature sets for bootstrap-
ping scans. Pre-scan (location and AS) and cross-protocol information com-
plement each other well, producing the largest savings in the sequential case.
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using both feature sets. Cross-protocol information by itself does not provide

good predictive power for most port responses, with the exception of mail pro-

tocols which are strongly correlated. In fact, mail protocols account for almost

all of the bandwidth savings when not using any pre-scan features. On the other

hand, location and AS properties offer bandwidth savings across all ports, even

for isolated ports such as 7547 (CWMP) and 445 (SMB). Consequently, using

both pre-scan and cross-protocol information, we can further reduce probes by

leveraging all available information, including biases in different regions, and

strong correlations between certain ports. Note that while cross-protocol de-

pendencies have been observed in previous work [13], our framework leverages

these correlations for bootstrapping scans by combining them with a priori

attributes.

Comparing stateless and stateful scans in Table 21.5, we observe similar

overall performance2, and slightly higher bandwidth savings for active IPs in

the stateful scenario. Note that applying our technique for stateful scans also

leads to a significant computational overhead, since the results of each scan

must be parsed, followed by feature extraction, and the increase in the number

of features also leads to complex, and therefore slower models. Due to the small

performance benefit offered by stateful scans, we conclude that using stateless

scans is sufficient for our sequential approach in Figure 21.2b.

Note that another approach for reducing probes of an Internet scan is to

refrain from sending probes to hosts that have not been responsive in previous

scans. However, this method relies on periodically performing global scans,

2The small decrease in overall performance for the 99.9% true positive rates for stateful

scans is possibly due to overfitting because of the large number of features, and variations

due to randomness in the training process.
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while our proposed method only needs a partial exhaustive scan for training

the underlying classifiers. Moreover, using historical data fails to recognize new

active IP addresses. On the five snapshot used for this study, we observe that

an average of 19.7% of active IPs in each snapshot are not present in the

previous month’s snapshot. Previous work has also reported that the accuracy

of this approach drops to 80% within one month [34]. We have also included a

breakdown of new active ports in Table 21.6, where the percentage of new active

ports can be as high as 50.6% for port 445 (SMB). This suggests that naively

using historical data for producing scan target can lead to low true positive

rates, while our proposed approach is also effective at detecting new active IPs.

Nevertheless, it is interesting to examine whether adding historical data to our

feature set can further boost the performance of classifiers, a problem that we

leave for future work.

21.6.2. Coverage on vulnerable IP addresses

Network scanning is often used to give visibility into the security posture of

networks by revealing vulnerable Internet-facing machines. While simply be-

ing accessible on the public Internet poses risk of being targeted by attackers,

and some ports (e.g., port 7547 for routers) generally should not be left open,

other protocols such as HTTP(S) and mail protocols are used to offer services

to clients, and simply responding to probes is not necessarily an indication of

a vulnerability. In this scenario, the scanner should be able to discover vul-

nerable subpopulations with good coverage (i.e., true positive rate) to be able

to accurately assess the attack surface of networks. Therefore in this section,

we examine the true positive rate of our scanning technique for three types of
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Table 21.6: Average percent-
age of active ports that are inac-
tive in the previous month’s snap-
shot, averaged over all five snap-
shots in this study. Note that the
average percentage of new active
IPs over all snapshots is 19.7%.

Port Protocol Percentage

21 ftp 17.6%

22 ssh 20.4%

23 telnet 31.6%

25 smtp 12.2%

53 dns 28.8%

80 http 13.5%

110 pop3 6.9%

143 imap 5.2%

443 https 14.6%

445 smb 50.6%

465 smtp 7.2%

587 smtp 5.0%

993 imaps 7.8%

995 pop3s 5.2%

2323 telnet 28.5%

3306 mysql 12.2%

5432 psql 10.8%

7547 cwmp 33.3%

8080 http 17.8%

8888 http 29.7%
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vulnerable and misconfigured machines, namely open DNS resolvers, HTTPS

servers susceptible to the Heartbleed vulnerability, and Exim mail servers vul-

nerable to CVE-2018-6789 disclosed on 2/8/2018.

Open DNS resolvers are utilized in DNS amplification attacks, where an

attacker turns small queries into large payloads, resulting in a reflection Dis-

tributed Denial of Service (DDoS) attack by eliciting responses from open DNS

resolvers to spoofed IP addresses [35]. While an open DNS resolver is not a di-

rect vulnerability, it endangers the security of the Internet, and previous work

has shown that it is correlated with high cyber-risk due to being an indica-

tion of mismanangement and poor security policies [8]. We extract 3 520 442

(43.4% of all DNS servers) open DNS resolvers for 1/1/2019 as indicated by

Censys. The Heartbleed vulnerability (CVE-2014-0160) [9] is a security bug in

the OpenSSL library that was discovered in April 2014, allowing attackers to

remotely read protected memory from HTTPS servers. While this vulnerability

was promptly patched following its disclosure, Censys reports 101 083 (0.18%

of HTTPS servers) vulnerable HTTPS sites in its 1/1/2019 snapshot. CVE-

2018-6789 affecting Exim SMTP mail server versions ≤ 4.90, allows attackers

to remotely execute arbitrary code. By parsing the banner of the SMTP proto-

col on ports 25, 465, and 587, we extract 400 199 (6.0% of all servers), 523 134

(13.0%), and 685 191 (12.4%) susceptible servers, respectively.

Table 21.7 displays the observed true positive rates for the aforementioned

vulnerabilities at different operating points for parallel and sequential scans.

We observe similar coverage to the overall target true positive rates for open

resolvers, and higher coverage for Exim servers. For servers vulnerable to Heart-

bleed, coverage is lower (∼75%) at 90% target TPR, however this improves for

higher operating points. Overall, we do not observe a large bias that would im-
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Table 21.7: Coverage (true positive rate) over vulnerable and misconfigured IP
addresses at different target true positive rates.

Scan type
Open Resolver Heartbleed Exim ≤ 4.90

53/dns 443/https 25/smtp 465/smtp 587/smtp

Parallel

90% 87.9% 74.8% 96.1% 92.6% 95.0%

95% 93.6% 91.3% 98.2% 97.7% 98.4%

98% 97.4% 95.7% 99.4% 99.5% 99.6%

99% 98.6% 98.5% 99.8% 99.8% 99.8%

99.9% 99.9% 100.0% 99.9% 100.0% 99.9%

Sequential

90% 87.7% 75.2% 98.1% 93.6% 94.1%

95% 94.0% 92.9% 99.2% 97.7% 97.8%

98% 97.6% 98.4% 99.8% 99.3% 99.8%

99% 98.7% 99.9% 100.0% 99.9% 99.9%

99.9% 99.9% 100.0% 100.0% 100.0% 99.9%

pede our technique from discovering vulnerable subpopulations, even for rare

vulnerabilities such as Heartbleed affecting 0.18% of HTTPS sites; this further

justifies the efficacy of our technique for security applications. Note, however,

that while we observe consistent discovery rates for the examined vulnera-

bilities, there may exist other subpopulations of interest with low coverage.

Nevertheless, one can guarantee discovery rates by adjusting the threshold for

sending out probes, or training classifiers specifically targeting said subpopu-

lations by applying the same methodology.

21.6.3. Keeping models up-to-date

The Internet is an ever-changing ecosystem, where structures and patterns

can change over time. For instance, ownerships of different networks, or the

behavior of system administrators can change over time, varying the patterns

which are utilized by our models for predicting port responses; this in turn
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Figure 21.5: Performance of parallel and sequential models trained at 1/1/2019,
over data from different dates. Bandwidth savings are reported for a target true
positive rate of 99%. We observe gracefully degrading performance, suggesting
that models only need to be retrained once every few months.

warrants retraining models in order to keep them up-to-date. To determine

how often models should be retrained, and to evaluate the performance of

trained models for predicting port responses in future scans, we evaluate the

overall bandwidth savings over our data sets for 2/1, 3/1, 4/1, and 5/1 of 2019,

when models are trained on data from 1/1/2019.

We have included our results in Figure 21.5; we are reporting bandwidth

savings corresponding to a 99% true positive rate. To achieve the target true

positive rate for each scan, we use partial exhaustive scans on 17.5 million ad-

dresses for each date (the same amount used for training the machine learning

models), and readjust thresholds tkr detailed in Section 21.3.3; this allows us

to guarantee overall coverage while removing the need to retrain models. We

observe a graceful degradation of performance, suggesting that models only

need to be retrained once every few months to keep them up-to-date.
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21.6.4. Practical utility

We now discuss how our framework can be combined with existing scanners.

The first step is to collect exhaustive measurements on a random subset of

IP addresses for training classification models. Note that tools such as ZMap

already traverse the IPv4 address space in a randomized order, in order to

spread their traffic and reduce the strain on different networks; therefore we

can simply perform a partial scan first, and then pause for training models.

For this study, we used data corresponding to 17.5 million IP addresses, which

only account for ∼0.6% of the utilized IPv4 space announced on BGP. For

parallel scans, the predictions of trained models can simply be provided to the

scanner as a blacklist, telling the scanner to avoid sending probes to IPs where

it is fairly certain that the probe is not going to be answered. For sequential

scans, the same process can be achieved in sequence, simply taking the results

of one full scan, performing predictions, and providing the results as a blacklist

for the subsequent scan.

One important aspect of our framework is its computational overhead for

performing predictions. For our experiments, we used the GPU-accelerated

algorithm for XGBoost for both training and evaluating our models, using a

NVIDIA GeForce GTX 1080 Ti GPU. It takes 20-40 seconds to train a model

for a single port; we observe similar times for both parallel and sequential

models. Note, however, that according to our results in Section 21.6.3, we do

not need to retrain models after each scan.

For a trained model it takes approximately 10 microseconds to perform

a prediction on a single sample. While this would add up to a significant

time if predictions are performed for every single IP address (i.e., 2.8 billion

addresses for the entire IPv4 address space), note that AS/GL information are
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typically constant across large networks, and there are a limited number of port

configurations, leading to duplicate feature vectors. In fact, we observe that

for an entire Censys snapshot, there are only ∼130 000 unique GL/AS feature

vectors; adding the labels for all 20 ports we observe roughly 3 million unique

configurations of both GL/AS features and port labels. This suggests that the

entire computation for a parallel scan can be done in ∼1.3 seconds, while for

a sequential scan we can perform the required predictions in approximately

30 seconds.3 Therefore, the computational overhead of applying our proposed

techniques is negligible; for comparison, ZMap scans the entire IPv4 address

space for a single port in 45 (5) minutes with a (10) gigabit connection.

21.7. Related Work

There are numerous measurement studies that analyze Internet scan data.

Security studies focus on measuring vulnerabilities, misconfiguration, and an-

alyzing malicious hosts; these include, e.g., errors made by Certificate Au-

thorities (CAs) when issuing certificates [12], a study on the Mirai botnet [7],

and a measurement-based analysis of the Heartbleed vulnerability [9]. Stud-

ies on trends and adoption rates include measuring HTTPS adoption [10],

TLS deployment [11], and a study of Certification Authority Authorization

(CAA) [16]. Studies on discovering different types of Internet-facing devices

include scanning for instances of the Robot Operating System (ROS) [14], and

developing an engine for discovering IoT devices [15]. Beverly et al. [17], Claffy

3Note that this is a worst-case estimate. For ports toward the start of the sequence the

number of unique feature vectors is closer to the unique vectors for GL/AS features, since

only a fraction of port responses have been revealed and are being used for prediction.
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et al. [18], Shavitt and Shir [19] use networks scans for mapping the topology

of the Internet.

While there exist a wide range of measurement studies utilizing Internet

scans, there are fewer works focusing on applications of machine learning for

processing network scan data. Liu et al. [8] use symptoms of mismanagement

(e.g., open resolvers and untrusted certificates) discovered on an organization

network, to predict their risk of suffering from a data breach. Sarabi and Liu

[28] develop a framework for processing Internet scan data in machine learning

models. In this chapter, we use the feature extraction techniques from [28] to

generate features for training classifiers.

Generating scanning targets and analyzing active (or live) IPs has also re-

ceived attention in the past. Bano et al. [13] conduct an analysis of live (active)

IPs, and (similar to our results) find cross-protocol correlations between the

liveness of different ports. Klick et al. [34] periodically scan the entire IPv4

address space, omitting low density prefixes from future scans. In comparison

with [34], our method does not require full scans by using machine learning

to identify low density networks, and leverages cross-protocol information for

further improving the efficiency of scans. Fan and Heidemann [1] develop an

automated technique for generating a representative Internet hitlist for scan-

ning. Murdock et al. [2] identify dense address space regions and generate can-

didates for IPv6 scanning. Our proposed framework can complement target

generation techniques, using machine learning to probe hosts more prudently,

which in turn results in a higher hit rate, allowing one to scan hitlists at a

faster rate.

Note that for our problem we are trying to predict multiple (possibly cor-

related) labels, making our learning task a multi-label classification problem.
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Read et al. [36] suggest training a chain of classifiers in sequence, appending the

output of each model in the chain for subsequent predictions. We use a similar

approach to predict port labels; however, instead of using the predictions of

the model, we append the true label of each sample (only if the corresponding

classifier tells us to perform a probe) to subsequent predictions, since prob-

ing then reveals the true label of the IP address. Another method for dealing

with correlated labels for multi-label classification includes applying a label

transformation, e.g., to produce uncorrelated labels [37, 38, 39]. Dealing with

imbalanced classes has been studied by Chawla et al. [40], where the authors

suggest a combination of undersampling the majority class with oversampling

the minority class (by creating synthetic samples). In this study, we undersam-

ple the majority class (inactive IPs), and also weight the minority class (active

IPs/ports) to deal with imbalanced classes.

21.8. Conclusions and Future Work

In this chapter, we developed and evaluated a framework for reducing the

bandwidth of network scans by predicting whether a host will respond to re-

quests on a certain port, using location and ownership (AS) properties, as well

as cross-protocol information. We demonstrated that using only location and

AS features we can achieve overall bandwidth savings of 26.7-72.0% at 90-99%

true positive rates for detecting active/open ports, averaged over 20 port scans

from the Censys database. Moreover, we developed a novel technique for find-

ing an optimal order for scanning ports and training a sequence of classifiers,

appending the responses of scanned ports for predicting active IPs over subse-

quent scans. We show that using this technique we can increase the bandwidth
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savings of Internet scans to 47.4-83.5% at 90-99% coverage levels. This re-

duction in bandwidth is due to the high dependency between the responses of

certain ports, for instance ports corresponding to mail servers. We further show

that our technique can be applied on top of current scanning tools with little

computational overhead, providing blacklists in order to refrain from sending

probes to certain IP/port pairs.

We compared our methodology to other strategies for conducting machine

learning enabled scans, concluding that ignoring location and AS properties

results in poor performance, while using the full set of features from stateful

scans only provides marginal benefits, while significantly increasing computa-

tional requirements. We also showed that scans have consistent coverage along

vulnerable and misconfigured subpopulations, and are therefore appropriate

for efficient and accurate assessment of the attack surface of networks.

We intend to apply our developed techniques to develop smart scanners

that can efficiently scan IPv4 networks and IPv6 hitlists, increasing the hit

rate for discovering active IPs. This allows scanners to scan IPv4 faster and

less intrusively compared to exhaustive scans, while covering larger histlists for

discovering more devices on IPv6. Additionally, using other sources of informa-

tion, e.g., historical data, and local patterns in how devices are placed on the

Internet (for example some networks might tend to put active devices at the

start of their allocated IP blocks, while others might use random placement)

can also help improve the efficiency of scans. Note that for sequential scans

we are using a static order for probing different ports. However, it might be

more efficient to change the order of scans for different networks, for instance

scanning modem/router protocols first for consumer networks, while prioritiz-

ing web protocols for hosting networks. Using a dynamic order for scans is
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another direction for future work.
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